Cell proliferation effect of deep-penetrating microcavity tandem NIR OLEDs with therapeutic trend analysis

深穿透微腔串联近红外 OLED 的细胞增殖效应及治疗趋势分析

阅读:5
作者:Yongjin Park #, Hye-Ryung Choi #, Yongmin Jeon, Hyuncheol Kim, Jung Won Shin, Chang-Hun Huh, Kyoung-Chan Park, Kyung-Cheol Choi

Abstract

Long wavelengths that can deeply penetrate into human skin are required to maximize therapeutic effects. Hence, various studies on near-infrared organic light-emitting diodes (NIR OLEDs) have been conducted, and they have been applied in numerous fields. This paper presents a microcavity tandem NIR OLED with narrow full-width half-maximum (FWHM) (34 nm), high radiant emittance (> 5 mW/cm2) and external quantum efficiency (EQE) (19.17%). Only a few papers have reported on biomedical applications using the entire wavelength range of the visible and NIR regions. In particular, no biomedical application studies have been reported in the full wavelength region using OLEDs. Therefore, it is worth researching the therapeutic effects of using OLED, a next-generation light source, and analyzing trends for cell proliferation effects. Cell proliferation effects were observed in certain wavelength regions when B, G, R, and NIR OLEDs were used to irradiate human fibroblasts. The results of an in-vitro experiment indicated that the overall tendency of wavelengths is similar to that of the cytochrome c oxidase absorption spectrum of human fibroblasts. This is the first paper to report trends in the cell proliferation effects in all wavelength regions using OLEDs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。