Determination of the Relationships between the Chemical Structure and Antimicrobial Activity of a GAPDH-Related Fish Antimicrobial Peptide and Analogs Thereof

GAPDH相关鱼类抗菌肽及其类似物的化学结构与抗菌活性关系的确定

阅读:5
作者:Samuel Cashman-Kadri, Patrick Lagüe, Ismail Fliss, Lucie Beaulieu

Abstract

The structure-activity relationships and mode of action of synthesized glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-related antimicrobial peptides were investigated. Including the native skipjack tuna GAPDH-related peptide (SJGAP) of 32 amino acid residues (model for the study), 8 different peptide analogs were designed and synthesized to study the impact of net charge, hydrophobicity, amphipathicity, and secondary structure on both antibacterial and antifungal activities. A net positive charge increase, by the substitution of anionic residues or C-terminal amidation, improved the antimicrobial activity of the SJGAP analogs (minimal inhibitory concentrations of 16-64 μg/mL), whereas the alpha helix content, as determined by circular dichroism, did not have a very definite impact. The hydrophobicity of the peptides was also found to be important, especially for the improvement of antifungal activity. Membrane permeabilization assays showed that the active peptides induced significant cytoplasmic membrane permeabilization in the bacteria and yeast tested, but that this permeabilization did not cause leakage of 260 nm-absorbing intracellular material. This points to a mixed mode of action involving both membrane pore formation and targeting of intracellular components. This study is the first to highlight the links between the physicochemical properties, secondary structure, antimicrobial activity, and mechanism of action of antimicrobial peptides from scombrids or homologous to GAPDH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。