Conclusions
These observations suggest associations of the AGE/RAGE/DIAPH1 axis in the immunometabolic pathophysiology of obesity and insulin resistance, driven, at least in part, through expression and activity of this axis in SAT.
Methods
We sought to answer this question by analyzing gene expression patterns of markers of the AGE/RAGE/DIAPH1 signaling axis in abdominal subcutaneous (SAT) and omental (OAT) adipose tissue from obese and morbidly obese subjects.
Results
In SAT, but not OAT, expression of AGER was significantly correlated with that of DIAPH1 (n = 16; [Formula: see text], [0.260, 1.177]; q = 0.008) and GLO1 (n = 16; [Formula: see text], [0.364, 1.182]; q = 0.004). Furthermore, in SAT, but not OAT, regression analyses revealed that the expression pattern of genes in the AGE/RAGE/DIAPH1 axis is strongly and positively associated with that of inflammatory and adipogenic markers. Remarkably, particularly in SAT, not OAT, the expression of AGER positively and significantly correlated with HOMA-IR (n = 14; [Formula: see text], [0.338, 1.249]; q = 0.018). Conclusions: These observations suggest associations of the AGE/RAGE/DIAPH1 axis in the immunometabolic pathophysiology of obesity and insulin resistance, driven, at least in part, through expression and activity of this axis in SAT.
