Renal disposition of colistin in the isolated perfused rat kidney

粘菌素在大鼠离体灌注肾脏中的肾脏分布

阅读:5
作者:Zheng Ma, Jiping Wang, Roger L Nation, Jian Li, John D Turnidge, Kingsley Coulthard, Robert W Milne

Abstract

Nephrotoxicity is an important limitation to the clinical use of colistin against Pseudomonas aeruginosa and other gram-negative pathogens. Previous work reported net tubular reabsorption of colistin by the kidney in vivo, but there is no knowledge of its disposition within the kidney. This study investigated the renal disposition and potential transport mechanisms of colistin in the isolated perfused rat kidney (IPK) model by perfusing with colistin sulfate alone (2 microg/ml) or in the presence of potential inhibitors (tetraethylammonium [TEA], glycine-glycine [Gly-Gly], or hydrochloric acid [HCl]) at three different concentrations. When perfused alone, the renal clearances (CL(R)) for colistin A and B (the major components of colistin) in control kidneys were constant and low (mean values < 0.05 ml/min throughout the perfusion). The mean clearance ratios [CR, defined as CL(R)/(f(u) x GFR), where f(u) is the fraction of drug unbound in perfusate and GFR is the glomerular filtration rate] were significantly less than 1. It was concluded that there is net tubular reabsorption of colistin, and this exceeded the reabsorption of water. Less than 10% eliminated from perfusate was recovered in urine, suggesting considerable renal accumulation of colistin. The CR values for colistin were significantly increased when perfused with TEA (500 microM), Gly-Gly (833 microM), and HCl (2,500, 5,000, and 10,000 microM). It is proposed that renal reabsorption of colistin may involve organic cation transporters (inhibited by TEA) and peptide transporters (inhibited by Gly-Gly) and that the process is sensitive to the pH of urine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。