Overexpression of NDRG2 Increases Iodine Uptake and Inhibits Thyroid Carcinoma Cell Growth In Situ and In Vivo

NDRG2 的过度表达会增加碘的吸收并抑制甲状腺癌细胞的原位和体内生长

阅读:8
作者:Anqi Yin, Chengguo Wang, Jiachen Sun, Jianjun Gao, Liang Tao, Xilin Du, Huadong Zhao, Jiandong Yang, Yan Li

Abstract

Medullary thyroid carcinoma (MTC) is an uncommon and highly aggressive tumor of the neuroendocrine system, which derives from the neuroendocrine C cells of the thyroid gland. Except for surgical resection, there are not very many effective systemic treatment options for MTC. N-Myc downstream-regulated gene 2 (NDRG2) had a significantly lower expression in MTC compared with normal thyroid tissue. However, the function of NDRG2 in MTC oncogenesis is largely unknown. In this study, we found that overexpression of NDRG2 inhibited the proliferation of TT cells (human medullary thyroid carcinoma cells) in vitro and suppressed the development of MTC in a nude mouse xenograft model. Further analysis revealed that NDRG2 arrested the cell cycle G0/G1 phase progression and induced TT cell apoptosis. Moreover, NDRG2 overexpression may mediate the antiproliferative effect by reducing cyclin D1 and cyclin E protein levels. We also found aberrant NDRG2-mitigated TT cell migration and invasion in vitro. Sodium/iodide symporter (NIS) mediates active I(-) transport into the thyroid follicular cells, and radionuclide treatment is a promising therapy for MTC. Our current data revealed that NDRG2 overexpression enhanced NIS level in TT cells and increased their iodine uptake in vitro. Furthermore, (99m)TcO4(-) radionuclide imaging of the xenograft tumors indicated that NDRG2 could promote NIS-mediated radionuclide transport. In conclusion, the present study suggested that NDRG2 is a critical molecule in the regulation of MTC biological behavior and a potential promoter in radioactive iodine therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。