Concerning Synthesis of New Biobased Polycarbonates with Curcumin in Replacement of Bisphenol A and Recycled Diphenyl Carbonate as Example of Circular Economy

关于合成新型生物基聚碳酸酯以姜黄素替代双酚 A 和回收二苯碳酸酯作为循环经济的例子

阅读:13
作者:Vincenzo De Leo, Michele Casiello, Giuseppe Deluca, Pietro Cotugno, Lucia Catucci, Angelo Nacci, Caterina Fusco, Lucia D'Accolti

Abstract

Curcumin (CM) is a natural polyphenol wellknown for its antioxidant and pharmaceutical properties, that can represent a renewable alternative to bisphenol A (BPA) for the synthesis of biobased polycarbonates (PC). In the presented strategy, preparation of the CMbased PC was coupled with chemical recycling of the fossilbased BPA polycarbonate (BPAPC) conducting a twosteps transpolymerization that replaces BPA monomer with CM or its tetrahydrogenated colorless product (THCM). In the first step of synthetic strategy, depolymerization of commercial BPAPC was carried out with phenol as nucleophile, according to our previous procedure based on zinc derivatives and ionic liquids as catalysts, thus producing quantitatively diphenyl carbonate (DPC) e BPA. In the second step, DPC underwent a melt transesterification with CM or THCM monomers affording the corresponding biobased polycarbonates, CMPC and THCMPC, respectively. THCM was prepared by reducing natural bisphenol with cyclohexene as a hydrogen donor and characterized by 1H-NMR and MS techniques. Polymerization reactions were monitored by infrared spectroscopy and average molecular weights and dispersity of the two biobased polymers THCMPC and CMPC were determined by means of gel permeation chromatography (GPC). Optical properties of the prepared polymers were also measured.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。