Downregulation of the β1 adrenergic receptor in the myocardium results in insensitivity to metoprolol and reduces blood pressure in spontaneously hypertensive rats

心肌中 β1 肾上腺素受体的下调导致对美托洛尔不敏感,并降低自发性高血压大鼠的血压

阅读:6
作者:Yun Huang, Xiao-Li Liu, Jia Wen, Li-Hua Huang, Yao Lu, Ru-Jia Miao, Xing Liu, Ying Li, Xiao-Wei Xing, Hong Yuan

Abstract

The β1‑adrenergic receptor (AR) is the primary β‑AR subtype in the heart and is the target of metoprolol (Met), which is commonly used to treat angina and hypertension. Previous studies have revealed a positive correlation between the methylation levels of the adrenoreceptor β1 gene (Adrb1) promoter in the myocardium with the antihypertensive activity of Met in spontaneously hypertensive rats (SHR), which affects β1‑AR expression in H9C2 cells. The aim of the present study was to investigate the effects of myocardial β1‑AR downregulation using short‑hairpin RNA (shRNA) against Adrb1 on the antihypertensive activity of Met in SHR. Recombinant adeno‑associated virus type 9 (rAAV9) vectors carrying Adrb1 shRNA (rAAV9‑Adrb1) or a negative control sequence (rAAV9‑NC) were generated and used to infect rat hearts via the pericardial cavity. The results of reverse transcription‑quantitative polymerase chain reaction, immunohistochemistry and western blotting analyses demonstrated that cardiac β1‑AR expression in the rAAV9‑Adrb1 group was significantly downregulated when compared with the rAAV9‑NC group (P<0.001, P<0.001 and P=0.032, respectively). In addition, a greater reduction in systolic blood pressure (SBP) was observed in the rAAV9‑NC group compared with the rAAV9‑Adrb1 group following Met treatment (P=0.035). Furthermore, downregulation of myocardial β1‑AR was associated with a significant decrease in SBP (P<0.001). In conclusion, these data suggest that suppression of β1‑AR expression in the myocardium reduces SBP and sensitivity to Met in SHR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。