Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics

相关性驱动的机器学习可加速电子产品焊点的可靠性评估

阅读:4
作者:Vahid Samavatian, Mahmud Fotuhi-Firuzabad, Majid Samavatian, Payman Dehghanian, Frede Blaabjerg

Abstract

The quantity and variety of parameters involved in the failure evolutions in solder joints under a thermo-mechanical process directs the reliability assessment of electronic devices to be frustratingly slow and expensive. To tackle this challenge, we develop a novel machine learning framework for reliability assessment of solder joints in electronic systems; we propose a correlation-driven neural network model that predicts the useful lifetime based on the materials properties, device configuration, and thermal cycling variations. The results indicate a high accuracy of the prediction model in the shortest possible time. A case study will evaluate the role of solder material and the joint thickness on the reliability of electronic devices; we will illustrate that the thermal cycling variations strongly determine the type of damage evolution, i.e., the creep or fatigue, during the operation. We will also demonstrate how an optimal selection of the solder thickness balances the damage types and considerably improves the useful lifetime. The established framework will set the stage for further exploration of electronic materials processing and offer a potential roadmap for new developments of such materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。