From the Cover: Cadmium Exposure Differentially Alters Odorant-Driven Behaviors and Expression of Olfactory Receptors in Juvenile Coho Salmon (Oncorhynchus kisutch)

封面:镉暴露对幼年鲑鱼(Oncorhynchus kisutch)的嗅觉驱动行为和嗅觉受体表达产生不同影响

阅读:7
作者:Chase R Williams, James W MacDonald, Theo K Bammler, Michael H Paulsen, Christopher D Simpson, Evan P Gallagher

Abstract

Salmon exposed to waterborne metals can experience olfactory impairment leading to disrupted chemosensation. In the current study, we investigated the effects of cadmium (Cd) on salmon olfactory function by modeling an exposure scenario where juvenile salmon transiently migrate through a polluted waterway. Coho were exposed to environmentally relevant concentrations of waterborne Cd (2 and 30 µg/L) for 48 h and (0.3 and 2 μg/L) for 16 days, followed by a 16-day depuration associated with outmigration. Cadmium exposures inhibited behavioral responses towards L-cysteine and conspecific odorants, with effects persisting following the depuration. Behavioral alterations following the 30 µg/L exposure were associated with increased olfactory epithelial gene expression of metallothionein (mt1a) and heme oxygenase (hmox1); reduced expression of olfactory signal transduction (OST) molecules; and reduced expression of mRNAs encoding major coho odorant receptors (ORs). Salmon OR array analysis indicated that Cd preferentially impacted expression of OST and OR markers for ciliated olfactory sensory neurons (OSNs) relative to microvillus OSNs, suggesting a differential sensitivity of these two major OSN populations. Behavioral alterations on exposure to 0.3 and 2 µg/L Cd were associated with increased mt1a, but not with major histological or OR molecular changes, likely indicating disrupted OST as a major mechanism underlying the behavioral dysfunction at the low-level Cd exposures. Laser-ablation mass spectrometry analysis revealed that the OSN injury and behavioral dysfunction was associated with significant Cd bioaccumulation within the olfactory sensory epithelium. In summary, low-level Cd exposures associated with polluted waterways can induce differential and persistent olfactory dysfunction in juvenile coho salmon.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。