Molecular mechanisms by which splice modulator GEX1A inhibits leukaemia development and progression

剪接调节剂 GEX1A 抑制白血病发展和进展的分子机制

阅读:6
作者:Mark Sellin, Ryan Mack, Matthew C Rhodes, Lei Zhang, Stephanie Berg, Kanak Joshi, Shanhui Liu, Wei Wei, Peter Breslin S J, Peter Larsen, Richard E Taylor, Jiwang Zhang2

Conclusion

Our study suggests that GEX1A is a potent anti-leukaemic agent in combination with BCL-xL inhibitors, which targets leukaemic blasts and leukaemia stem cells through distinct mechanisms.

Methods

Using human leukaemic cell lines, we assessed the overall sensitivity these cells have to GEX1A via EC50 analysis. We subsequently analysed its effects using in vivo xenograft mouse models and examined whether cell sensitivities were correlated to genetic characteristics or protein expression levels. We also utilised RT-PCR and RNAseq analyses to determine splice change and RNA expression level differences between sensitive and resistant leukaemic cell lines.

Results

We found that, in vitro, GEX1A induced an MCL-1 isoform shift to pro-apoptotic MCL-1S in all leukaemic cell types, though sensitivity to GEX1A-induced apoptosis was negatively associated with BCL-xL expression. In BCL-2-expressing leukaemic cells, GEX1A induced BCL-2-dependent apoptosis by converting pro-survival BCL-2 into a cell killer. Thus, GEX1A + selective BCL-xL inhibition induced synergism in killing leukaemic cells, while GEX1A + BCL-2 inhibition showed antagonism in BCL-2-expressing leukaemic cells. In addition, GEX1A sensitised FLT3-ITD+ leukaemic cells to apoptosis by inducing aberrant splicing and repressing the expression of FLT3-ITD. Consistently, in in vivo xenografts, GEX1A killed the bulk of leukaemic cells via apoptosis when combined with BCL-xL inhibition. Furthermore, GEX1A repressed leukaemia development by targeting leukaemia stem cells through inhibiting FASTK mitochondrial isoform expression across sensitive and non-sensitive leukaemia types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。