Alteration in Gut Microbiota Associated with Zinc Deficiency in School-Age Children

学龄儿童肠道菌群改变与锌缺乏相关

阅读:7
作者:Xiaohui Chen, Yu Jiang, Zhuo Wang, Youhai Chen, Shihua Tang, Shuyue Wang, Li Su, Xiaodan Huang, Danfeng Long, Liang Wang, Wei Guo, Ying Zhang

Abstract

Zinc deficiency could lead to a dynamic variation in gut microbial composition and function in animals. However, how zinc deficiency affects the gut microbiome in school-age children remains unclear. The purpose of this study was to profile the dynamic shifts in the gut microbiome of school-age children with zinc deficiency, and to determine whether such shifts are associated with dietary intake. A dietary survey, anthropometric measurements, and serum tests were performed on 177 school-age children, and 67 children were selected to explore the gut microbial community using amplicon sequencing. School-age children suffered from poor dietary diversity and insufficient food and nutrient intake, and 32% of them were zinc deficient. The inflammatory cytokines significantly increased in the zinc deficiency (ZD) group compared to that in the control (CK) group (p < 0.05). There was no difference in beta diversity, while the Shannon index was much higher in the ZD group (p < 0.05). At the genus level, Coprobacter, Acetivibrio, Paraprevotella, and Clostridium_XI were more abundant in the ZD group (p < 0.05). A functional predictive analysis showed that the metabolism of xenobiotics by cytochrome P450 was significantly depleted in the ZD group (p < 0.05). In conclusion, gut microbial diversity was affected by zinc deficiency with some specific bacteria highlighted in the ZD group, which may be used as biomarkers for further clinical diagnosis of zinc deficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。