Impaired Gut-Systemic Signaling Drives Total Parenteral Nutrition-Associated Injury

肠道系统信号传导受损导致完全肠外营养相关损伤

阅读:12
作者:Miguel Guzman, Chandrashekhara Manithody, Joseph Krebs, Christine Denton, Sherri Besmer, Pranjali Rajalakshmi, Sonali Jain, Gustavo Adolfo Villalona, Ajay Kumar Jain

Background

Total parenteral nutrition (TPN) provides all nutritional needs intravenously. Although lifesaving, enthusiasm is significantly tempered due to side effects of liver and gut injury, as well as lack of mechanistic understanding into drivers of TPN injury. We hypothesized that the state of luminal nutritional deprivation with TPN drives alterations in gut-systemic signaling, contributing to injury, and tested this hypothesis using our ambulatory TPN model.

Conclusion

We report significant alterations in key hepatobiliary receptors driving gut-systemic signaling in a TPN piglet model. This presents a major advancement to our understanding of TPN-associated injury and suggests opportunities for strategic targeting of the gut-systemic axis, specifically, FXR, TGR5, and EGF in developing ameliorative strategies.

Methods

A total of 16 one-week-old piglets were allocated randomly to TPN (n = 8) or enteral nutrition (EN, n = 8) for 3 weeks. Liver, gut, and serum were analyzed. All tests were two-sided, with a significance level of 0.05.

Results

TPN resulted in significant hyperbilirubinemia and cholestatic liver injury, p = 0.034. Hepatic inflammation (cluster of differentiation 3 (CD3) immunohistochemistry) was higher with TPN (p = 0.021). No significant differences in alanine aminotransferase (ALT) or bile ductular proliferation were noted. TPN resulted in reduction of muscularis mucosa thickness and marked gut atrophy. Median and interquartile range for gut mass was 0.46 (0.30-0.58) g/cm in EN, and 0.19 (0.11-0.29) g/cm in TPN (p = 0.024). Key gut-systemic signaling regulators, liver farnesoid X receptor (FXR; p = 0.021), liver constitutive androstane receptor (CAR; p = 0.014), gut FXR (p = 0.028), G-coupled bile acid receptor (TGR5) (p = 0.003), epidermal growth factor (EGF; p = 0.016), organic anion transporter (OAT; p = 0.028), Mitogen-activated protein kinases-1 (MAPK1) (p = 0.037), and sodium uptake transporter sodium glucose-linked transporter (SGLT-1; p = 0.010) were significantly downregulated in TPN animals, whereas liver cholesterol 7 alpha-hydroxylase (CyP7A1) was substantially higher with TPN (p = 0.011).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。