Infusion of adipose‑derived mesenchymal stem cells inhibits skeletal muscle mitsugumin 53 elevation and thereby alleviates insulin resistance in type 2 diabetic rats

输注脂肪间充质干细胞可抑制骨骼肌 mitsugumin 53 升高,从而减轻 2 型糖尿病大鼠的胰岛素抵抗

阅读:8
作者:Zihui Deng, Huiyan Xu, Jinying Zhang, Chen Yang, Liyuan Jin, Jiejie Liu, Haijing Song, Guanghui Chen, Weidong Han, Yiling Si

Abstract

It is widely accepted that infusion of mesenchymal stem cells (MSCs) ameliorates hyperglycemia by alleviating insulin resistance in rats with type 2 diabetes mellitus (T2D). However, the detailed underlying mechanisms are not clearly defined. Mitsugumin 53 (MG53) is an E3 ligase that has recently been implicated in the aggravation of insulin resistance by promoting the ubiquitinoylation of insulin receptor substrate‑1 (IRS‑1) in skeletal muscles. It was therefore hypothesized that MG53 may be involved in MSC‑mediated therapeutic effects on insulin resistance. To test this hypothesis, in the present study, T2D rat models were induced by a high‑fat diet combined with streptozotocin administration and MSC infusion was performed four times (once every 2 weeks for 8 weeks). The therapeutic effects of MSC infusion on insulin resistance were evaluated and the effect on the expression of MG53 and insulin receptor signaling elements in skeletal muscle was also investigated by immunofluorescence staining and western blotting. The results demonstrated that MSC infusion ameliorated hyperglycemia and insulin resistance in T2D rats. Furthermore, MSC infusion inhibited MG53 elevation and reversed the decreases in glucose transporter type 4, insulin receptor, IRS‑1 and phosphorylated‑AKT levels in the skeletal muscle of T2D rats. These results indicated that MSC infusion has therapeutic effects in rats and that MG53 in skeletal muscle may be a promising novel therapeutic target protein for MSC‑mediated amelioration of insulin resistance in T2D.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。