Disorganized olfactory bulb lamination in mice deficient for transcription factor AP-2epsilon

转录因子 AP-2epsilon 缺乏的小鼠嗅球分层紊乱

阅读:4
作者:Weiguo Feng, Fabio Simoes-de-Souza, Thomas E Finger, Diego Restrepo, Trevor Williams

Abstract

Within the olfactory bulb, neurons and their axonal connections are organized into distinct layers corresponding to different functionalities. Here we demonstrate that transcription factor AP-2epsilon is required for olfactory bulb development, specifically the establishment of appropriate neuronal lamination. During normal mouse embryogenesis, AP-2epsilon transcripts are one of the earliest markers of olfactory bulb formation, and expression eventually becomes refined to the projection neurons, the mitral and tufted cells. To assess the function of AP-2epsilon in olfaction, we generated a null allele (the "AK" allele) by inserting a Cre recombinase transgene into the endogenous AP-2epsilon genomic locus. AP-2epsilon-null mice exhibited defective olfactory bulb architecture. The mitral cell layer was disorganized, typified by misoriented and aberrantly positioned projection neurons, and the adjacent internal plexiform layer was absent. Despite the significant disruption of olfactory bulb organization, AP-2epsilon null mice were viable and could discriminate a variety of odors. AP-2epsilon-null mice thus provide compelling evidence for the robust nature of the mouse olfactory system, and serve as a model system to probe both the regulation of neuronal lamination and the functional circuitry of the olfactory bulb. We also show that Cre recombinase expression directed by the AP-2epsilon locus can specifically target floxed genes within the olfactory bulb, extending the utility of this AK allele.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。