Improved Accuracy of Saxitoxin Measurement Using an Optimized Enzyme-Linked Immunosorbent Assay

使用优化的酶联免疫吸附测定法提高石房蛤毒素测量的准确性

阅读:10
作者:Jennifer R McCall, W Christopher Holland, Devon M Keeler, D Ransom Hardison, R Wayne Litaker

Abstract

Paralytic shellfish poisoning (PSP) is precipitated by a family of toxins produced by harmful algae, which are consumed by filter-feeding and commercially popular shellfish. The toxins, including saxitoxin, neosaxitoxin, and gonyautoxins, accumulate in shellfish and cause intoxication when consumed by humans and animals. Symptoms can range from minor neurological dysfunction to respiratory distress and death. There are over 40 different chemical congeners of saxitoxin and its analogs, many of which are toxic and many of which have low toxicity or are non-toxic. This makes accurate toxicity assessment difficult and complicates decisions regarding whether or not shellfish are safe to consume. In this study, we describe a new antibody-based bioassay that is able to detect toxic congeners (saxitoxin, neosaxitoxin, and gonyautoxins) with little cross-reactivity with the low or non-toxic congeners (decarbamoylated or di-sulfated forms). The anti-saxitoxin antibody used in this assay detects saxitoxin and neosaxitoxin, the two most toxic congers equally well, but not the relatively highly toxic gonyautoxins. By incorporating an incubation step with L-cysteine, it is possible to convert a majority of the gonyautoxins present to saxitoxin and neosaxitoxin, which are readily detected. The assay is, therefore, capable of detecting the most toxic PSP congeners found in commercially relevant shellfish. The assay was validated against samples whose toxicity was determined using standard HPLC methods and yielded a strong linear agreement between the methods, with R2 values of 0.94-0.96. As ELISAs are rapid, inexpensive, and easy-to-use, this new commercially available PSP ELISA represents an advance in technology allowing better safety management of the seafood supply and the ability to screen large numbers of samples that can occur when monitoring is increased substantially in response to toxic bloom events.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。