Immunoproteasome in animal models of Duchenne muscular dystrophy

杜氏肌营养不良症动物模型中的免疫蛋白酶体

阅读:10
作者:Chiao-Nan Joyce Chen, Ted G Graber, Wendy M Bratten, Deborah A Ferrington, LaDora V Thompson

Abstract

Increased proteasome activity has been implicated in the atrophy and deterioration associated with dystrophic muscles of Duchenne muscular dystrophy (DMD). While proteasome inhibitors show promise in the attenuation of muscle degeneration, proteasome inhibition-induced toxicity was a major drawback of this therapeutic strategy. Inhibitors that selectively target the proteasome subtype that is responsible for the loss in muscle mass and quality would reduce side effects and be less toxic. This study examined proteasome activity and subtype populations, along with muscle function, morphology and damage in wild-type (WT) mice and two murine models of DMD, dystrophin-deficient (MDX) and dystrophin- and utrophin-double-knockout (DKO) mice. We found that immunoproteasome content was increased in dystrophic muscles while the total proteasome content was unchanged among the three genotypes of mice. Proteasome proteolytic activity was elevated in dystrophic muscles, especially in DKO mice. These mice also exhibited more severe muscle atrophy than either WT or MDX mice. Muscle damage and regeneration, characterized by the activity of muscle creatine kinase in the blood and the percentage of central nuclei were equally increased in dystrophic mice. Accordingly, the overall muscle function was similarly reduced in both dystrophic mice compared with WT. These data demonstrated that there was transformation of standard proteasomes to immunoproteasomes in dystrophic muscles. In addition, DKO that showed greatest increase in proteasome activities also demonstrated more severe atrophy compared with MDX and WT. These results suggest a putative role for the immunoproteasome in muscle deterioration associated with DMD and provide a potential target for therapeutic intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。