pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth

pH 控制的二氧化铈纳米粒子抑制革兰氏阳性菌和革兰氏阴性菌的生长

阅读:10
作者:Ece Alpaslan, Benjamin M Geilich, Hilal Yazici, Thomas J Webster

Abstract

Here, the antibacterial activity of dextran-coated nanoceria was examined against Pseudomonas aeruginosa and Staphylococcus epidermidis by varying the dose, the time of treatment, and the pH of the solution. Findings suggested that dextran-coated nanoceria particles were much more effective at killing P. aeruginosa and S. epidermidis at basic pH values (pH = 9) compared to acidic pH values (pH = 6) due to a smaller size and positive surface charge at pH 9. At pH 9, different particle concentrations did cause a delay in the growth of P. aeruginosa, whereas impressively S. epidermidis did not grow at all when treated with a 500 μg/mL nanoceria concentration for 24 hours. For both bacteria, a 2 log reduction and elevated amounts of reactive oxygen species (ROS) generation per colony were observed after 6 hours of treatment with nanoceria at pH 9 compared to untreated controls. After 6 hours of incubation with nanoceria at pH 9, P. aeruginosa showed drastic morphological changes as a result of cellular stress. In summary, this study provides significant evidence for the use of nanoceria (+4) for a wide range of anti-infection applications without resorting to the use of antibiotics, for which bacteria are developing a resistance towards anyway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。