Effects of Lysophosphatidylcholine on Intestinal Health of Turbot Fed High-Lipid Diets

溶血磷脂酰胆碱对饲喂高脂饲料的多宝鱼肠道健康的影响

阅读:5
作者:Sihui Li, Xing Luo, Zhangbin Liao, Mengqing Liang, Houguo Xu, Kangsen Mai, Yanjiao Zhang

Abstract

An 8-week feeding trial was conducted, where turbot were fed four experimental diets, containing different LPC levels (0%, 0.1%, 0.25%, and 0.5%, named LPC0, LPC0.1, LPC0.25, and LPC0.5, respectively). The intestinal morphology results showed that there were no widened lamina propria and mixed inflammatory cells in the LPC-supplemented groups. Dietary LPC remarkably decreased the expression of TLRs (TLR3, TLR8, TLR9, and TLR22), MyD88, and signaling molecules (NF-κB, JNK, and AP-1). Similarly, diets with LPC supplementation markedly depressed the gene expression of NF-κB and JNK signaling pathway downstream genes (TNF-α, IL-1β, Bax, Caspase9, and Caspase-3). Furthermore, dietary LPC modified the intestinal microbial profiles, increasing the relative abundance of short-chain fatty acids-producers, lactic acid bacteria, and digestive enzyme-producing bacteria. Predictive functions of intestinal microbiota showed that turbot fed LPC diets had a relatively higher abundance of functions, such as lipid metabolism and immune system, but a lower abundance of functions, such as metabolic diseases and immune system diseases. The activities of intestinal acid phosphatase and alkaline phosphatase were also increased by dietary LPC. In conclusion, LPC supplementation could regulate the intestinal mucosal barrier via the TLR signaling pathway and alter the intestinal microbiota profile of turbot fed high-lipid diets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。