In vivo magnetic resonance imaging tracking of transplanted superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells in rats with myocardial infarction

超顺磁性氧化铁标记骨髓间充质干细胞移植于心肌梗死大鼠的体内磁共振成像追踪

阅读:5
作者:Ping Hua, You-Yu Wang, Li-Bao Liu, Jia-Liang Liu, Jian-Yang Liu, Yan-Qi Yang, Song-Ran Yang

Abstract

Superparamagnetic iron oxide (SPIO) nanoparticles generate superparamagnetism, thereby resulting in an inhomogeneous local magnetic field, which shortens the T2 value on magnetic resonance imaging (MRI). The purpose of the present study was to use MRI to track bone marrow mesenchymal stem cells (BMSCs) labeled with SPIO in a rat model of myocardial infarction. The BMSCs were isolated from rats and labeled with SPIO. The anterior descending branch of the coronary artery was ligated under anesthesia. Two weeks later, the rats received, at random, 5 x 10(7) SPIO-labeled BMSCs, 5 x 10(7) unlabeled BMSCs or a vehicle (100 µl phosphate-buffered saline) via direct injection into the ischemic area (20 animals/group). MRI was used to track the SPIO‑labeled BMSCs and the rats were then sacrificed to verify the presence of BMSCs using immunohistochemistry with an anti-CD90 antibody. The procedure labeled 99% of the BMSCs with SPIO, which exhibited low-intensity signals on T2 and T2* MRI imaging. At 24 h post-BMSC transplantation, low-intensity MRI signals were detected on the T2 and T2* sequences at the infarction margins. After 3 weeks following transplantation, low-intensity signals started to appear within the infarcted area; however, the signal intensity subsequently decreased and became indistinct. Immunohistochemistry revealed that the SPIO-labeled BMSCs migrated from the margin into the infarcted region. In conclusion, the BMSCs were readily labeled with SPIO and in vivo and MRI tracking demonstrated that the SPIO-labeled BMSCs established and grew in the infarcted myocardium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。