Deferoxamine-induced neurite outgrowth and synapse formation in postnatal rat dorsal root ganglion (DRG) cell cultures

去铁胺诱导出生后大鼠背根神经节 (DRG) 细胞培养中的神经突生长和突触形成

阅读:5
作者:Marcin Nowicki, Joanna Kosacka, Katharina Spanel-Borowski, Jürgen Borlak

Abstract

Deferoxamine (DFO) was granted orphan drug status for the treatment of traumatic spinal cord injury but its neuroprotective mechanism is not well understood. We therefore investigated the mode of action of DFO in serum-starved and/or iron-stressed cultures of rat dorsal root ganglion (DRG) cells. We probed for redox signaling by determining hemeoxygenase-1 activity and by measuring expression of intracellular iron metabolism-related proteins under pro-oxidative conditions. We also employed DNA microarrays to better understand the genomic response of DRG cultures to treatment with DFO thereby enabling the generation of hypotheses. Essentially, DFO treatment resulted in outgrowth of neurofilament 200-positive neurites and induction of synapse formation as determined by immunoblotting, transmission electron microscopy and immunofluorescence confocal microscopy. Furthermore, DFO treatment of DRG cell cultures activated neuroprotective and antioxidative programs such as matrix metallopeptidase 2 and apolipoprotein D to promote neurite regeneration. Indeed, DFO reduced markedly reactive oxygen species formation, increased the expression of hemeoxygenase-1 and improved iron management through regulation of transferrin receptor and ferritin. We propose DFO treatment of DRG cell cultures to completely abolish the oxidative effect of ferrous iron (Fe(2+)). Taken collectively, DFO reduced oxidative stress and induced synthesis of neuroprotective and antioxidative molecules to foster nerve repair and functional recovery. Our findings help to better understand the therapeutic benefit of DFO in the treatment of spinal cord injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。