Neuroprotection effect of interleukin (IL)-17 secreted by reactive astrocytes is emerged from a high-level IL-17-containing environment during acute neuroinflammation

在急性神经炎症期间,反应性星形胶质细胞分泌的白细胞介素 (IL)-17 的神经保护作用源于高水平 IL-17 的环境

阅读:4
作者:M H Hu, Q F Zheng, X Z Jia, Y Li, Y C Dong, C Y Wang, Q Y Lin, F Y Zhang, R B Zhao, H W Xu, J H Zhou, H P Yuan, W H Zhang, H Ren

Abstract

An increase in interleukin (IL)-17A-producing cells, particularly at sites of tissue inflammation, is observed frequently, yet the mechanism is not fully understood. This study aims to dissect the role of IL-17 in autoimmunity-mediated neuroinflammation. The cytokine milieu containing elevated IL-17, which often appears in active states of autoimmunity, was mimicked in vitro by a supernatant obtained from rat peripheral blood monocytes stimulated with phorbol mystistate acetate (PMA)/ionomycin. The application of such inflammatory media on only primary cultured cerebellar granule neurones resulted in significant apoptosis, but the presence of astrocytes largely prevented the effect. The supernatants of the stimulated astrocytes, especially those that contained the highest level of IL-17, achieved the best protection, and this effect could be blocked by anti-IL-17 antibodies. Protein IL-17 inhibited intracellular calcium increase and protected the neurones under inflammatory attack from apoptosis. IL-17, but not interferon (IFN)-γ, in the inflammatory media contributed to astrocyte secretion of IL-17, which depended on the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway activation. The astrocytes that were treated with IL-17 alone or with prolonged treatment of the inflammatory media failed to produce sufficient levels of IL-17. Moreover, confirmatory data were obtained in vivo in a monophasic experimental autoimmune uveitis (EAU) in Lewis rats; in this preparation, the high-level IL-17-containing the cytokine milieu was demonstrated, along with IL-17 secretion by the resident neural cells. The antagonism of IL-17 at a late stage disturbed the disease resolution and resulted in significant neural apoptosis. Our data show a dynamic role of IL-17 in the maintenance of homeostasis and neuroprotection in active neuroinflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。