Methyl-CpG binding domain protein acts to regulate the repair of cyclobutane pyrimidine dimers on rice DNA

甲基-CpG结合域蛋白调控水稻DNA环丁烷嘧啶二聚体的修复

阅读:5
作者:Changxun Fang, Weisi Chen, Chengxun Li, Xin Jian, Yingzhe Li, Hongmei Lin, Wenxiong Lin

Abstract

UVB radiation causes cyclobutane pyrimidine dimers (CPDs) to form on the DNA of living organisms. This study found that overexpression of the silicon absorbance gene Lsi1 reduced the accumulation of CPDs in rice, which profited from the reactivation by photolyase. The transcript abundance of deoxyribodipyrimidine photolyase (Os10g0167600) was generally correlated with the silicon content of the rice, and the up-regulation of Os10g0167600 was found to be highest in the UVB-treated Lsi1-overexpressed (Lsi1-OX) rice. A trans-acting factor, methyl-CpG binding domain protein (OsMeCP), was found to interact with the cis-element of Os10g0167600. The nucleic location of OsMeCP effectively enabled the transcriptional regulation. Compared with the WT, the level of OsMeCP was lower in the Lsi1-OX rice but higher in the Lsi1-RNAi line. Rice cultured in a high silicate-concentration solution also exhibited less OsMeCP abundance. Overexpression of OsMeCP led to lower Os10g0167600 transcript levels and a higher CPD content than in the WT, but the reverse was true in the OsMeCP-RNAi line. These findings indicate that OsMeCP acts as a negative regulator of silicon, and can mediate the repression of the transcription from Os10g0167600, which inhibits the photoreactivation of the photolyase involved in the repair of CPDs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。