SEC61 translocon gamma subunit is correlated with glycolytic activity, epithelial mesenchymal transition and the immune suppressive phenotype of lung adenocarcinoma

SEC61 转运蛋白γ亚基与肺腺癌的糖酵解活性、上皮间质转化和免疫抑制表型相关

阅读:7
作者:Changshuai Zhou, Huanhuan Cui, Yuechao Yang, Lei Chen, Mingtao Feng, Yang Gao, Deheng Li, Liangdong Li, Xin Chen, Xiaoqiu Li, Yiqun Cao

Abstract

Lung adenocarcinoma (LUAD) remains a predominant cause of cancer-related mortality globally, underscoring the urgency for targeted therapeutic strategies. The specific role and impact of the SEC61 translocon gamma subunit (SEC61G) in LUAD progression and metastasis remain largely unexplored. In this study, we use a multifaceted approach, combining bioinformatics analysis with experimental validation, to elucidate the pivotal role of SEC61G and its associated molecular mechanisms in LUAD. Our integrated analyses reveal a significant positive correlation between SEC61G expression and the glycolytic activity of LUAD, as evidenced by increased fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET)/CT scans. Further investigations show the potential influence of SEC61G on metabolic reprogramming, which contributes to the immunosuppressive tumor microenvironment (TME). Remarkably, we identify a negative association between SEC61G expression levels and the infiltration of critical immune cell populations within the TME, along with correlations with immune checkpoint gene expression and tumor heterogeneity scores in LUAD. Functional studies demonstrate that SEC61G knockdown markedly inhibits the migration of A549 and H2030 LUAD cells. This inhibitory effect is accompanied by a significant downregulation of key regulators of tumor progression, including hypoxia-inducible factor-1 alpha (HIF-1α), lactate dehydrogenase A, and genes involved in the epithelial-mesenchymal transition pathway. In conclusion, our comprehensive analyses position SEC61G as a potential prognostic biomarker intricately linked to glycolytic metabolism, the EMT pathway, and the establishment of an immune-suppressive phenotype in LUAD. These findings underscore the potential of SEC61G as a therapeutic target and predictive marker for immunotherapeutic responses in LUAD patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。