Effects of Oxide Fragments on Microstructure and Mechanical Properties of AA6061 Aluminum Alloy Tube Fabricated by Thermomechanical Consolidation of Machining Chips

氧化物碎片对加工切屑热机械凝固制备AA6061铝合金管组织与力学性能的影响

阅读:5
作者:Zhen Zhang, Jiamiao Liang, Tian Xia, Yuehuang Xie, Sammy Lap Ip Chan, Jun Wang, Deliang Zhang

Abstract

An AA6061 aluminum alloy tube was fabricated by compacting machining chips via thermomechanical consolidation, including hot pressing and hot extrusion. The microstructure evolution and formation of oxide particles were investigated in correlation to tensile mechanical properties. It was found that fine Al/Mg oxide particles were formed due to the fracture of oxide layers on the chips and the reaction between Mg and Al2O3 during hot extrusion. The oxide particles inhibited the growth of recrystallized α-Al grains, leading to the formation of a microstructure consisting of coarse elongated grains with sizes of 420 μm and fine equiaxed grains with sizes of 10 μm. After T6 heat treatment, a microstructure with finer grains (grain sizes: 34 μm) formed due to further recrystallization induced by residual strain. The tensile mechanical properties testing results indicated that a good combination of strength (296 MPa) and ductility (7.6%) was achieved in the T6 heat treated samples, which were likely attributed to the high-quality inter-chip bonding, as well as the fine oxide particles which were small enough that further crack nucleation and growth around them were inhibited during tensile deformation. For the purpose of comparison, the microstructure and mechanical properties of the as-extruded and T6 heat treated samples produced by hot extrusion of the cast ingot of AA6061 aluminum alloy were also investigated. The lower tensile strength of solid-state recycled tube sample might be associated with the consumption of Mg atoms by the oxidation reaction, leading to the lower density of β″ precipitates in precipitation strengthening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。