Functional characterization of the mutations in Pepper mild mottle virus overcoming tomato tm-1-mediated resistance

辣椒轻斑驳病毒突变体克服番茄 tm-1 介导抗性的功能表征

阅读:5
作者:Hiroyuki Mizumoto, Yukino Morikawa, Kazuhiro Ishibashi, Kentaro Kimura, Kohei Matsumoto, Masayuki Tokunaga, Akinori Kiba, Masayuki Ishikawa, Tetsuro Okuno, Yasufumi Hikichi

Abstract

In tomato plants, Pepper mild mottle virus (PMMoV) cannot replicate because the tm-1 protein inhibits RNA replication. The resistance of tomato plants to PMMoV remains durable both in the field and under laboratory conditions. In this study, we constructed several mutant PMMoVs and analysed their abilities to replicate in tomato protoplasts and plants. We found that two mutants, PMMoV-899R,F976Y and PMMoV-899R,F976Y,D1098N, were able to replicate in tomato protoplasts, but only PMMoV-899R,F976Y,D1098N was able to multiply in tomato plants. Further analysis showed that the D1098N mutation of the replication proteins weakened the inhibitory effect of the tm-1 protein and enhanced the replication efficiency of PMMoV-899R,F976Y,D1098N. We also observed that the infectivity of the viruses decreased in the order wild-type PMMoV > PMMoV-899R,F976Y > PMMoV-899R,F976Y,D1098N in original host plants, pepper and tobacco plants. On the contrary, the single mutation D1098N abolished PMMoV replication in tobacco protoplasts. On the basis of these observations, it is likely that the deleterious side-effects of mutations in replication proteins prevent the emergence of PMMoV mutants that can overcome tm-1-mediated resistance.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。