Osteopontin Peptide Icosamer Containing RGD and SLAYGLR Motifs Enhances the Motility and Phagocytic Activity of Microglia

含有 RGD 和 SLAYGLR 基序的骨桥蛋白肽二十聚体增强小胶质细胞的运动能力和吞噬活性

阅读:5
作者:Il-Doo Kim, Hahnbie Lee, Yin-Chuan Jin, Ja-Kyeong Lee

Abstract

Osteopontin (OPN) is a secreted glycoprotein that is expressed in various tissues, including brain, and mediates a wide range of cellular activities. In a previous study, the authors observed the robust neuroprotective effects of recombinant OPN and of RGD and SLAYGLR-containing OPN-peptide icosamer (OPNpt20) in an animal model of transient focal ischemia, and demonstrated anti-inflammatory and pro-angiogenic effects of OPNpt20 in the postischemic brain. In the present study, we investigated the effects of OPNpt20 on the motility and phagocytic activity of BV2 cells (a microglia cell line). F-actin polymerization and cell motility were significantly enhanced in OPNpt20-treated BV2 cells, and numbers of filopodia-like processes increased and lamellipodia-like structures enlarged and thickened. In addition, treatment of cells with either of three mutant OPN icosamers containing mutation within RGD, SLAY, or RGDSLAY showed that the RGD and SLAY motifs of OPNpt20 play critical roles in the enhancement of cell motility, and the interaction between exogenous OPNpt20 and endogenous αv and α4 integrin and the activations of FAK, Erk, and Akt signaling pathways were found to be involved in the OPNpt20-mediated induction of cell motility. Furthermore, phagocytic activity of microglia was also significantly enhanced by OPNpt20 in a RGD and SLAY dependent manner. These results indicate OPNpt20 containing RGD and SLAY motifs triggers microglial motility and phagocytic activity and OPNpt20-integrin mediated signaling plays a critical role in these activities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。