Kinetics of tau aggregation reveals patient-specific tau characteristics among Alzheimer's cases

tau 聚集动力学揭示了阿尔茨海默病患者特异性 tau 特征

阅读:4
作者:Tarun V Kamath, Naomi Klickstein, Caitlin Commins, Analiese R Fernandes, Derek H Oakley, Matthew P Frosch, Bradley T Hyman, Simon Dujardin

Abstract

The accumulation of tau aggregates throughout the human brain is the hallmark of a number of neurodegenerative conditions classified as tauopathies. Increasing evidence shows that tau aggregation occurs in a 'prion-like' manner, in which a small amount of misfolded tau protein can induce other, naïve tau proteins to aggregate. Tau aggregates have been found to differ structurally among different tauopathies. Recently, however, we have suggested that tau oligomeric species may differ biochemically among individual patients with sporadic Alzheimer disease, and have also showed that the bioactivity of the tau species, measured using a cell-based bioassay, also varied among individuals. Here, we adopted a live-cell imaging approach to the standard cell-based bioassay to explore further whether the kinetics of aggregation also differentiated these patients. We found that aggregation can be observed to follow a consistent pattern in all cases, with a lag phase, a growth phase and a plateau phase, which each provide quantitative parameters by which we characterize the aggregation kinetics. The length of the lag phase and magnitude of the plateau phase are both dependent upon the concentration of seeding-competent tau, the relative enrichment of which differs among patients. The slope of the growth phase correlates with morphological differences in the tau aggregates, which may be reflective of underlying structural differences. This kinetic assay confirms and refines the concept of heterogeneity in the characteristics of tau proteopathic seeds among individuals with Alzheimer's disease and is a method by which future studies may characterize longitudinal changes in tau aggregation and the cellular processes which may influence these changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。