Resistance to store depletion-induced endothelial injury in rat lung after chronic heart failure

慢性心力衰竭后大鼠肺对储存耗竭引起的内皮损伤的抵抗力

阅读:5
作者:Diego F Alvarez, Judy A King, Mary I Townsley

Conclusions

We conclude that the adaptive mechanism limiting store depletion-induced endothelial lung injury in the aortocaval model of heart failure involves downregulation of store-operated Ca2+ channels.

Methods

Heart failure was induced by aortocaval fistula in rats. Permeability was measured in isolated lungs using the filtration coefficient and a low Ca2+/Ca2+ add-back strategy to identify the component of the permeability response dependent on Ca2+ entry. Main

Results

In fistulas, right ventricular mass and left ventricular end diastolic pressure were increased and left ventricular shortening fraction decreased compared with shams. Thapsigargin-induced store depletion increased lung endothelial permeability in shams, but not in fistulas. Permeability increased in both groups after the Ca2+ ionophore A23187 or 14,15-epoxyeicosatrienoic acid, independent of store depletion. A diacylglycerol analog had no impact on permeability. Increased distance between the endoplasmic reticulum and the plasmalemmal membrane was ruled out as a mechanism for the loss of the permeability response to store depletion. Endothelial expression of the endoplasmic reticulum Ca2+ ATPase was not altered in fistulas compared with shams, whereas the store-operated canonical transient receptor potential channels 1, 3, and 4 were downregulated in extraalveolar vessel endothelium. Conclusions: We conclude that the adaptive mechanism limiting store depletion-induced endothelial lung injury in the aortocaval model of heart failure involves downregulation of store-operated Ca2+ channels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。