Hexabromocyclododecane and tetrabromobisphenol A alter secretion of interferon gamma (IFN-γ) from human immune cells

六溴环十二烷和四溴双酚 A 改变人体免疫细胞干扰素 γ (IFN-γ) 的分泌

阅读:8
作者:Haifa Almughamsi, Margaret M Whalen

Abstract

Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) are brominated flame-retardant compounds used in a variety of applications including insulation, upholstery, and epoxy resin circuit boards. Interferon gamma (IFN-γ) is an inflammatory cytokine produced by activated T and NK cells that regulates immune responsiveness. HBCD and TBBPA are found in human blood, and previous studies have shown that they alter the ability of human natural killer (NK) lymphocytes to destroy tumor cells. This study examines whether HBCD and TBBPA affect the secretion of IFN-γ from increasingly complex preparations of human immune cells-purified NK cells, monocyte-depleted (MD) peripheral blood mononuclear cells (PBMCs), and PBMCs. Both HBCD and TBBPA were tested at concentrations ranging from 0.05 to 5 µM. HBCD generally caused increases in IFN-γ secretion after 24-h, 48-h, and 6-day exposures in each of the different cell preparations. The specific concentration of HBCD that caused increases as well as the magnitude of the increase varied from donor to donor. In contrast, TBBPA tended to decrease secretion of IFN-γ from NK cells, MD-PBMCs, and PBMCs. Thus, exposure to these compounds may potentially disrupt the immune regulation mediated by IFN-γ. Signaling pathways that have the capacity to regulate IFN-γ production (nuclear factor kappa B (NF-κB), p44/42, p38, JNK) were examined for their role in the HBCD-induced increases in IFN-γ. Results showed that the p44/42 (ERK1/2) MAPK pathway appears to be important in HBCD-induced increases in IFN-γ secretion from human immune cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。