Prenatal Hyperhomocysteinemia Leads to Synaptic Dysfunction and Structural Alterations in the CA1 Hippocampus of Rats

产前高同型半胱氨酸血症导致大鼠海马 CA1 区突触功能障碍和结构改变

阅读:10
作者:Tatyana Y Postnikova, Alexandra V Griflyuk, Natalia L Tumanova, Nadezhda M Dubrovskaya, Anastasia V Mikhel, Dmitriy S Vasilev, Aleksey V Zaitsev

Abstract

Prenatal hyperhomocysteinemia (HCY) is associated with neurodevelopmental deficits, yet its long-term impact on hippocampal synaptic function remains poorly understood. This study examines the effects of moderate maternal HCY on excitatory synaptic transmission in the CA1 region of the dorsal hippocampus in rat offspring at juvenile (P21) and adult (P90) stages. Using field postsynaptic potential (fPSP) recordings, electron microscopy, and Western blot analysis, we observed a significant age-dependent decline in the efficiency of excitatory synaptic transmission in HCY-exposed rats. Electron microscopy revealed structural alterations, including synaptic vesicle agglutination in the stratum radiatum, suggesting impaired neurotransmitter release. Additionally, a significant reduction in pyramidal neuron density was observed in the CA1 region, although seizure susceptibility remained unchanged. Western blot analysis showed altered expression of Synapsin I, indicating presynaptic dysfunction. These findings suggest that moderate prenatal HCY leads to persistent deficits in synaptic transmission and structural integrity, potentially contributing to cognitive impairments in adulthood. Our results highlight the importance of maternal homocysteine levels in shaping hippocampal function and could offer insights into neurodevelopmental disorders associated with metabolic disturbances.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。