Cadmium Activates EGFR/STAT5 Signaling to Overcome Calcium Chelation and Promote Epithelial to Mesenchymal Transition

镉激活 EGFR/STAT5 信号以克服钙螯合并促进上皮向间质转化

阅读:6
作者:Aikaterini Stavrou, Angelica Ortiz, Max Costa

Abstract

Cadmium (Cd) is a heavy metal found in cigarette smoke, as well as in air and drinking water due to agricultural and industrial activities, and it poses a health risk to the general population. Prolonged low-dose Cd exposure via inhalation or ingestion causes lung and kidney cancers in humans and in animal models. While high doses of Cd exposure are correlated with the occupational setting and are cytotoxic, low doses of Cd are mainly correlated with exposure in the general population and induce carcinogenesis. The mechanism by which Cd-exposed cells overcome calcium chelation and induce malignant transformation remains unclear. This study examines how cells exposed to low doses of Cd survive loss of E-cadherin cell-cell adhesion via activation of the epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 5 (STAT5), which work to upregulate genes associated with survival and proliferation. To demonstrate the role of Cd in EGFR/STAT5 activation, we exposed two epithelial cell lines, BEAS-2B and HEK293, to two different doses (0.4 µM and 1.6 µM) of Cadmium chloride hemipentahydrate (CdCl2·2.5H2O) that are environmentally relevant to levels of Cd found in food and cigarettes for 24 h (hours) and 9 weeks (wks). When comparing cells treated with Cd with control cells, the Cd treated cells exhibited faster proliferation; therefore, we studied activation of EGFR via the STAT5 pathway using immunofluorescence (IF) for protein expression and localization and, in addition, RT-qPCR to examine changes in EGFR/STAT5 inducible genes. Our results showed an increase in EGFR and phosphorylated EGFR (p-EGFR) protein, with 1.6 µM of Cadmium having the highest expression at both 24-hour (hr) and 9-week (wk) exposures. Moreover, the IF analysis also demonstrated an increase of STAT5 and phosphorylated STAT5 (pSTAT5) in both short-term and long-term exposure, with 0.4 µM having the highest expression at 24 h. Finally, via Western blot analysis, we showed that there was a dose-dependent decrease in E-cadherin protein expression and increased N-cadherin in cells treated with low doses of Cd. These data demonstrate that epithelial cells can overcome Cd-mediated toxicity via activation of EGFR pathway to induce cell proliferation and survival and promote epithelial to mesenchymal transition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。