Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging

基于多光谱光声成像的盲光谱分离用于表征斑块成分

阅读:6
作者:Camilo Cano, Catarina Matos, Amir Gholampour, Marc van Sambeek, Richard Lopata, Min Wu

Abstract

To improve the assessment of carotid plaque vulnerability, a comprehensive characterization of their composition is paramount. Multispectral photoacoustic imaging (MSPAI) can provide plaque composition based on their absorption spectra. However, although various spectral unmixing methods have been developed to characterize different tissue constituents, plaque analysis remains a challenge since its composition is highly complex and diverse. In this study, we employed an adapted piecewise convex multiple-model endmember detection method to identify carotid plaque constituents. Additionally, we explore the selection of the imaging wavelengths in linear models by conditioning the coefficient matrix and its synergy with our unmixing approach. We verified our method using plaque mimicking phantoms and performed ex-vivo MSPAI on carotid endarterectomy samples in a spectral range from 500 to 1300 nm to identify the main spectral features of plaque materials for vulnerability assessment. After imaging, the samples were processed for histological analysis to validate the photoacoustic decomposition. Results show that our approach can perform spectral unmixing and classification of highly heterogeneous biological samples without requiring an extensive fluence correction, enabling the identification of relevant components to assess plaque vulnerability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。