Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis

病毒介导的抗氧化酶抑制导致严重呼吸道合胞病毒细支气管炎的发病机制

阅读:8
作者:Yashoda M Hosakote, Paul D Jantzi, Dana L Esham, Heidi Spratt, Alexander Kurosky, Antonella Casola, Roberto P Garofalo

Conclusions

RSV infection induces significant down-regulation of the airway antioxidant system in vivo, likely resulting in lung oxidative damage. Modulation of oxidative stress may pave the way toward important advances in the therapeutic approach of RSV-induced acute lung disease.

Methods

Superoxide dismutase 1 (SOD 1), SOD 2, SOD 3, catalase, glutathione peroxidase, and glutathione S-transferase, as well as Nrf2 expression, were measured in murine bronchoalveolar lavage, cell extracts of conductive airways, and/or in human nasopharyngeal secretions by Western blot and two-dimensional gel electrophoresis. Antioxidant enzyme activity and markers of oxidative cell injury were measured in either murine bronchoalveolar lavage or nasopharyngeal secretions by colorimetric/immunoassays. Measurements and main

Results

RSV infection induced a significant decrease in the expression and/or activity of SOD, catalase, glutathione S-transferase, and glutathione peroxidase in murine lungs and in the airways of children with severe bronchiolitis. Markers of oxidative damage correlated with severity of clinical illness in RSV-infected infants. Nrf2 expression was also significantly reduced in the lungs of viral-infected mice. Conclusions: RSV infection induces significant down-regulation of the airway antioxidant system in vivo, likely resulting in lung oxidative damage. Modulation of oxidative stress may pave the way toward important advances in the therapeutic approach of RSV-induced acute lung disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。