Gene regulation by PAX6: structural-functional correlations of missense mutants and transcriptional control of Trpm3/miR-204

PAX6 基因调控:错义突变体的结构功能相关性和 Trpm3/miR-204 的转录控制

阅读:9
作者:Qing Xie, Devina Ung, Kamil Khafizov, Andras Fiser, Ales Cvekl

Conclusions

These studies highlight the complexity of Pax6-dependent transcriptional activation and repression mechanisms, and identify the N50K and R128C substitutions as valuable tools for testing interactions between Pax6, Pax6 (N50K), and Pax6 (R128C) with other regulatory proteins, including chromatin remodelers.

Methods

Mutations in PAX6 and PAX6(5a), including G18W, R26G, N50K, G64V, R128C, and R242T, were generated with site-directed mutagenesis. A panel of ten luciferase reporters driven by six copies of Pax6-binding sites representing a spectrum of sites that act as repressors, moderate activators, and strong activators were used. Two additional reporters, including the Pax6-regulated enhancer from mouse Trpm3 and six copies of its individual Pax6-binding site, were also tested in P19 cells.

Purpose

Pax6 is a key regulatory gene for eye, brain, and pancreas development. It acts as a transcriptional activator and repressor. Loss-of-function of Pax6

Results

PAX6 (N50K) acted either as a loss-of-function or neutral mutation. In contrast, PAX6 (R128C) and (R242T) acted as loss-, neutral, and gain-of-function mutations. With three distinct reporters, the PAX6 (N50K) mutation broke the pattern of effects produced by substitutions in the surrounding helices of the N-terminal region of the paired domain. All six mutations tested acted as loss-of-function using the Trpm3 Pax6-binding site. Conclusions: These studies highlight the complexity of Pax6-dependent transcriptional activation and repression mechanisms, and identify the N50K and R128C substitutions as valuable tools for testing interactions between Pax6, Pax6 (N50K), and Pax6 (R128C) with other regulatory proteins, including chromatin remodelers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。