Polybaric petrogenesis of Neogene alkaline magmas in an extensional tectonic environment: Viliga Volcanic Field, northeast Russia

伸展构造环境中新近纪碱性岩浆的多重岩石成因:俄罗斯东北部维利加火山区

阅读:13
作者:Cornelius Tschegg, Theodoros Ntaflos, Vyacheslav V Akinin

Abstract

Neogene alkaline intraplate volcanic rocks from the Viliga Volcanic Field (NE-Russia) were studied both to precisely characterize their geochemical composition and to unravel their petrogenetic history. The sampled volcanic rocks crop out within the voluminous calc-alkaline sequences of the Cretaceous Okhostk-Chukokta Volcanic Belt, an Andean-type arc formed during subduction of the Paleo-Pacific Plate beneath modern far-east Asia. The mantle xenolith- and xenocryst-bearing basanites and nephelinites have intraplate ocean island basalt-type geochemical features. Sr and Nd isotopes combined with major and trace element systematics and rare-earth element modeling suggest polybaric melt generation of these alkaline magmatic rocks from a homogeneous garnet peridotite facies source with minor involvement of spinel peridotite facies partial melts. The basanite samples indicate segregation PT conditions around 1500 °C at 33-38 kbar whilst the nephelinites reflect smaller melt fractions segregated at over 40 kbar. During ascent, olivine (up to 7%) was the main fractionating phase in the basanites; whereas in the nephelinites, both olivine and minor clinopyroxene fractionation occurred. Crustal contamination during ascent was insignificant. We argue that the melt generation of these alkaline magmas from the Viliga Volcanic Field was triggered by an extending lithosphere resulting in upwelling asthenosphere and decompression melting, analogous to geodynamic models of the coeval alkaline volcanic rocks along the adjacent North Pacific continental margins, rather than by subduction- or plume-related processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。