Stable isotopes provide evidence that condensed tannins from sericea lespedeza are degraded by ruminal microbes

稳定同位素证明丝叶胡枝子中的缩合单宁被瘤胃微生物降解

阅读:9
作者:Flavia O S van Cleef, José C B Dubeux Jr, Chrisee S Wheeler, Carlos C V García, Martin Ruiz-Moreno, Lynn E Sollenberger, João M B Vendramini, Nicolas DiLorenzo, Harley D Naumann

Abstract

The objective of Trial 1 was to determine the effects of condensed tannins (CT) from sericea lespedeza [SL; Lespedeza cuneata (Dum. Cours.) G. Don] on in vitro digestible organic matter (IVDOM), total gas production (GP), methane (CH4) emission, and ruminal fluid parameters after fermentation. Substrates used in four 48-h in vitro fermentations were 100% bermudagrass [(Cynodon dactylon (L.) Pers.] hay (0SL), 100% SL hay (100SL), and a mix of both hays (50SL). Linear reductions were observed for all parameters (P < 0.05) with the inclusion of SL, except for CH4 in relation to GP, that presented a quadratic effect (P = 0.005). In Trial 2, SL plants were enriched with 13C-CO2 to obtain pure enriched CT to identify the destination of fermentation end products of CT degradation. The enrichment of CT through the SL was successful (P < 0.001), and carbon originated from CT was detected in the fermentation end products [microbial mass, clarified rumen fluid, and in the CH4 produced (P < 0.001)]. Therefore, inclusion of SL was effective in reducing in vitro CH4 production and compound-specific tracing of δ13C abundance provided better quantitative understanding of the mechanisms of partitioning CT during ruminal fermentation processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。