Glutathione and catalase suppress TGFbeta-induced cataract-related changes in cultured rat lenses and lens epithelial explants

谷胱甘肽和过氧化氢酶抑制培养大鼠晶状体和晶状体上皮外植体中 TGFbeta 诱发的白内障相关变化

阅读:5
作者:Coral G Chamberlain, Kylie J Mansfield, Anna Cerra

Conclusions

This study suggests that antioxidant systems present in the normal lens, which protect the epithelium against the damaging effects of reactive oxygen species, may also serve to protect it against the potentially cataractogenic effects of TGFbeta. Taken together with other recent studies, it also raises the possibility that TGFbeta may induce cataract-related changes in lens epithelial cells via release of hydrogen peroxide.

Methods

Whole lenses from young rats were cultured with or without TGFbeta in the presence or absence of reduced glutathione (GSH). Lens epithelial explants from weanling rats were used to investigate the effects of GSH and catalase on TGFbeta-induced cataract-related changes. Lenses were monitored for opacification for three to four days, photographed, and then processed for routine histology. Explants were assessed by phase contrast microscopy, enzyme-linked immunosorbent assay (ELISA) of alpha-smooth muscle actin (alphaSMA), and/or immunolocalization of alphaSMA and Pax6, markers for transdifferentiation and normal lens epithelial phenotype, respectively.

Purpose

The damaging effects of oxidative stress and transforming growth factor-beta (TGFbeta)-induced transdifferentiation of lens epithelial cells have both been implicated independently in the etiology of cataract. The aim of this study was to investigate whether the presence of antioxidant systems in the lens influences the ability of lens epithelial cells to respond to TGFbeta.

Results

In cultured lenses, GSH strongly suppressed TGFbeta-induced opacification and subcapsular plaque formation. In explants, both GSH and catalase suppressed changes typically associated with TGFbeta-induced transdifferentiation including wrinkling of the lens capsule, cell-surface blebbing, apoptotic cell loss, induction of alphaSMA, and loss of Pax6 expression. Conclusions: This study suggests that antioxidant systems present in the normal lens, which protect the epithelium against the damaging effects of reactive oxygen species, may also serve to protect it against the potentially cataractogenic effects of TGFbeta. Taken together with other recent studies, it also raises the possibility that TGFbeta may induce cataract-related changes in lens epithelial cells via release of hydrogen peroxide.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。