Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data

通过将主题建模应用于单细胞 Hi-C 数据来捕获特定细胞类型染色质区室模式

阅读:10
作者:Hyeon-Jin Kim, Galip Gürkan Yardımcı, Giancarlo Bonora, Vijay Ramani, Jie Liu, Ruolan Qiu, Choli Lee, Jennifer Hesson, Carol B Ware, Jay Shendure, Zhijun Duan, William Stafford Noble

Abstract

Single-cell Hi-C (scHi-C) interrogates genome-wide chromatin interaction in individual cells, allowing us to gain insights into 3D genome organization. However, the extremely sparse nature of scHi-C data poses a significant barrier to analysis, limiting our ability to tease out hidden biological information. In this work, we approach this problem by applying topic modeling to scHi-C data. Topic modeling is well-suited for discovering latent topics in a collection of discrete data. For our analysis, we generate nine different single-cell combinatorial indexed Hi-C (sci-Hi-C) libraries from five human cell lines (GM12878, H1Esc, HFF, IMR90, and HAP1), consisting over 19,000 cells. We demonstrate that topic modeling is able to successfully capture cell type differences from sci-Hi-C data in the form of "chromatin topics." We further show enrichment of particular compartment structures associated with locus pairs in these topics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。