Redox-sensitive Nrf2 and MAPK signaling pathways contribute to trichloroethene-mediated autoimmune disease progression

氧化还原敏感的 Nrf2 和 MAPK 信号通路促进三氯乙烯介导的自身免疫性疾病进展

阅读:19
作者:Nivedita Banerjee, Hui Wang, Gangduo Wang, Paul J Boor, M Firoze Khan

Abstract

Trichloroethene (TCE) exposure is associated with the induction of autoimmune diseases (ADs). Although oxidative stress plays a major role in TCE-mediated autoimmunity, the underlying molecular mechanisms still need to be delineated. Dysregulation of redox-sensitive nuclear factor (erythroid-derived 2)-like2 (Nrf2), resulting in uncontrolled antioxidant and cytoprotective genes, and pro-inflammatory MAPK signaling pathways could be critical in TCE-mediated disease progression. This study was, therefore, focused on establishing status and contribution of Nrf2 and MAPK signaling in TCE-mediated inflammatory and autoimmune responses, especially during disease progression. To achieve these objectives, time-response studies were conducted by treating female MRL+/+ mice with TCE (0.5 mg/mL, a dose relevant to human exposure) for 24, 36 and 52 wks. TCE exposure led to reduction in Nrf2 expression, but increased phos-NF-κB (p65) and iNOS along with increased phosphorylation of MAPKs (p38, ERK and JNK) and downstream pro-inflammatory cytokines IL-12, TNF-α and RANTES in the livers in a time-dependent manner. These changes were also associated with time-dependent increases in liver protein carbonyls and induction of serum anti-dsDNA antibodies (marker of systemic lupus erythematosus disease), further supporting the role of oxidative stress and Nrf2/MAPK signaling in TCE-mediated autoimmune response progression. The mechanistic role of MAPK in TCE-mediated autoimmunity was further established by treating MRL+/+ mice with sulforaphane (SFN; 8 mg/kg, i.p., every other day) along with TCE (10 mmol/kg, i.p., every 4th day) for 6 wks using an established protocol, and by in vitro treatment of T cells with dichloroacetyl chloride (a TCE metabolite) with/without p38 MAPK inhibitor. SFN treatment attenuated the TCE-mediated phosphorylation of p38 MAPK. More importantly, treatment with SFN or p38 inhibitor led to suppression of downstream pro-inflammatory cytokines IL-12 and TNF-α. These findings thus support the contribution of Nrf2 and MAPK signaling pathways and help in delineating novel potential therapeutic targets against TCE-mediated autoimmunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。