Elevated pressure downregulates ZO-1 expression and disrupts cytoskeleton and focal adhesion in human trabecular meshwork cells

压力升高会下调人类小梁网细胞中的 ZO-1 表达并破坏细胞骨架和粘着斑

阅读:4
作者:Xuejiao Yang, Bingqian Liu, Yujing Bai, Min Chen, Yiqing Li, Mengfei Chen, Yantao Wei, Jian Ge, Yehong Zhuo

Conclusions

Sustained pressure elevation may directly damage trabecular meshwork cells by injuring ZO-1, cytoskeleton, and foal adhesions. And GTM(3) was more susceptible to damage than iHTM. We suggest that elevated pressure seems to be not only the results of damaged TM, but also an important factor for the injury of TM cells, stop or reverse the process may help developing new target for the treatment of primary open angle glaucoma (POAG).

Methods

iHTM and GTM(3) were exposed to 60 mmHg hydrostatic pressure for 6, 12, and 24 h. As a control, the cells were incubated simultaneously in a conventional incubator. Morphology changes were observed with an inverted microscope. The expression of ZO-1was examined with western blot, and the distribution of ZO-1 was assessed by immunofluorescence. Actin cytoskeleton and focal adhesion (vinculin) were also assessed by immunofluorescence. Data were analyzed with commercial data analysis software and a p<0.05 was considered to be statistically significant.

Purpose

To investigate the effect of elevated hydrostatic pressure on the expression and distribution of zonula occludens-1 (ZO-1), and its effect on cytoskeleton and focal adhesion in immortal human trabecular meshwork cells (iHTM) and glaucomatous human trabecular meshwork cells (GTM(3)).

Results

There was no evident morphology change after 24 h culture in 60 mmHg pressure in iHTM and GTM(3). However, in both iHTM and GTM(3), elevated pressure attenuated the expression of ZO-1 at 12 h and 24 h, detected by western blot. Meanwhile, high pressure disrupted the organization of ZO-1, actin cytoskeleton, and vinculin, assessed by immunofluorescence. When comparing iHTM with GTM(3), the distribution of ZO-1 and vinculin in GTM(3) was not as regular as that in iHTM. After exposuring in elevated pressure, the changes in GTM(3) were more obvious than that in iHTM. Conclusions: Sustained pressure elevation may directly damage trabecular meshwork cells by injuring ZO-1, cytoskeleton, and foal adhesions. And GTM(3) was more susceptible to damage than iHTM. We suggest that elevated pressure seems to be not only the results of damaged TM, but also an important factor for the injury of TM cells, stop or reverse the process may help developing new target for the treatment of primary open angle glaucoma (POAG).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。