Single-cell RNA sequencing uncovers heterogenous transcriptional signatures in macrophages during efferocytosis

单细胞 RNA 测序揭示巨噬细胞在胞吐过程中的异质转录特征

阅读:13
作者:Connor Lantz, Behram Radmanesh, Esther Liu, Edward B Thorp, Jennie Lin

Abstract

Efferocytosis triggers cellular reprogramming, including the induction of mRNA transcripts which encode anti-inflammatory cytokines that promote inflammation resolution. Our current understanding of this transcriptional response is largely informed from analysis of bulk phagocyte populations; however, this precludes the resolution of heterogeneity between individual macrophages and macrophage subsets. Moreover, phagocytes may contain so called "passenger" transcripts that originate from engulfed apoptotic bodies, thus obscuring the true transcriptional reprogramming of the phagocyte. To define the transcriptional diversity during efferocytosis, we utilized single-cell mRNA sequencing after co-cultivating macrophages with apoptotic cells. Importantly, transcriptomic analyses were performed after validating the disappearance of apoptotic cell-derived RNA sequences. Our findings reveal new heterogeneity of the efferocytic response at a single-cell resolution, particularly evident between F4/80+ MHCIILO and F4/80- MHCIIHI macrophage sub-populations. After exposure to apoptotic cells, the F4/80+ MHCIILO subset significantly induced pathways associated with tissue and cellular homeostasis, while the F4/80- MHCIIHI subset downregulated these putative signaling axes. Ablation of a canonical efferocytosis receptor, MerTK, blunted efferocytic signatures and led to the escalation of cell death-associated transcriptional signatures in F4/80+ MHCIILO macrophages. Taken together, our results newly elucidate the heterogenous transcriptional response of single-cell peritoneal macrophages after exposure to apoptotic cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。