Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

柴油废气暴露上调 ApoE 基因敲除小鼠的 iNOS 表达

阅读:9
作者:Ni Bai, Takashi Kido, Terrance J Kavanagh, Joel D Kaufman, Michael E Rosenfeld, Cornelis van Breemen, Stephan F van Eeden

Conclusions

We show that exposure to DE increases iNOS expression and activity possibly via NF-κB-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality.

Methods

ApoE knockout mice (30-week) were exposed to DE (at 200 μg/m³ of particulate matter) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400 W). NF-κB (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-κB (p65) was determined by real-time PCR.

Results

DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by ~20%, which was partly reversed by 1400 W. The mRNA expression of iNOS and NF-κB was significantly augmented after DE exposure. NF-κB activity was enhanced 2-fold after DE inhalation, and the augmented NF-κB activity was positively correlated with iNOS expression (R²=0.5998). Conclusions: We show that exposure to DE increases iNOS expression and activity possibly via NF-κB-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。