Kdm2a inhibition in skeletal muscle improves metabolic flexibility in obesity

骨骼肌中的 Kdm2a 抑制可改善肥胖症的代谢灵活性

阅读:9
作者:Yuhan Wang #, Hao Xie #, Qianrui Liu #, Na Wang #, Xi Luo, Fei Sun, Jinghan Zhu, Ruihan Dong, Yi Wang, Jia Gao, Zhichao Gao, Teng Huang, Xin Liu, Qilin Yu, Ting Wang, Yang Li, Danni Song, Shiwei Liu, Shu Zhang, Hao Yin, Wen Kong, Cong-Yi Wang0

Abstract

Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation. Deletion or inhibition of Kdm2a shifts fuel use from glucose under cold challenge to lipids under obese conditions by increasing the proportion of mitochondria-rich slow-twitch myofibers. This protects mice against cold insults and high-fat-diet-induced obesity and insulin resistance. Mechanistically, Kdm2a deficiency leads to a marked increase in H3K36me2 levels, which then promotes the recruitment of Mrg15 to the Esrrg locus to process its precursor messenger RNA splicing, thereby reshaping skeletal muscle metabolic profiles to induce slow-twitch myofiber transition. Collectively, our data support the role of Kdm2a as a viable target against metabolic stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。