Increased β-cell proliferation before immune cell invasion prevents progression of type 1 diabetes

免疫细胞入侵前增加 β 细胞增殖可防止 1 型糖尿病进展

阅读:5
作者:Ercument Dirice, Sevim Kahraman, Dario F De Jesus, Abdelfattah El Ouaamari, Giorgio Basile, Rocky L Baker, Burcu Yigit, Paul D Piehowski, Mi-Jeong Kim, Alexander J Dwyer, Raymond W S Ng, Cornelia Schuster, Heidrun Vethe, Tijana Martinov, Yuki Ishikawa, Adrian Kee Keong Teo, Richard D Smith, Jiang Hu

Abstract

Type 1 diabetes (T1D) is characterized by pancreatic islet infiltration by autoreactive immune cells and a near-total loss of β-cells1. Restoration of insulin-producing β-cells coupled with immunomodulation to suppress the autoimmune attack has emerged as a potential approach to counter T1D2-4. Here we report that enhancing β-cell mass early in life, in two models of female NOD mice, results in immunomodulation of T-cells, reduced islet infiltration and lower β-cell apoptosis, that together protect them from developing T1D. The animals displayed altered β-cell antigens, and islet transplantation studies showed prolonged graft survival in the NOD-LIRKO model. Adoptive transfer of splenocytes from the NOD-LIRKOs prevented development of diabetes in pre-diabetic NOD mice. A significant increase in the splenic CD4+CD25+FoxP3+ regulatory T-cell (Treg) population was observed to underlie the protected phenotype since Treg depletion rendered NOD-LIRKO mice diabetic. The increase in Tregs coupled with activation of TGF-β/SMAD3 signaling pathway in pathogenic T-cells favored reduced ability to kill β-cells. These data support a previously unidentified observation that initiating β-cell proliferation, alone, prior to islet infiltration by immune cells alters the identity of β-cells, decreases pathologic self-reactivity of effector cells and increases Tregs to prevent progression of T1D.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。