Nuclear receptor-coregulator interaction profiling identifies TRIP3 as a novel peroxisome proliferator-activated receptor gamma cofactor

核受体-共调节相互作用分析表明 TRIP3 是一种新型过氧化物酶体增殖激活受体γ 辅因子

阅读:5
作者:Arjen Koppen, Rene Houtman, Dirk Pijnenburg, Ellen H Jeninga, Rob Ruijtenbeek, Eric Kalkhoven

Abstract

Nuclear receptors (NRs) are major targets for drug discovery and have key roles in development and homeostasis as well as in many diseases such as obesity, diabetes, and cancer. NRs are ligand-dependent transcription factors that need to work in concert with so-called transcriptional coregulators, including corepressors and coactivators, to regulate transcription. Upon ligand binding, NRs undergo a conformational change, which alters their binding preference for coregulators. Short alpha-helical sequences in the coregulator proteins, LXXLL (in coactivators) or LXXXIXXXL (in corepressors), are essential for the NR-coregulator interactions. However, little is known on how specificity is dictated. To obtain a comprehensive overview of NR-coregulator interactions, we used a microarray approach based on interactions between NRs and peptides derived from known coregulators. Using the peroxisome proliferator-activated receptor gamma (PPARgamma) as a model NR, we were able to generate ligand-specific interaction profiles (agonist rosiglitazone versus antagonist GW9662 versus selective PPARgamma modulator telmisartan) and characterize NR mutants and isotypes (PPARalpha, -beta/delta, and -gamma). Importantly, based on the NR-coregulator interaction profile, we were able to identify TRIP3 as a novel regulator of PPARgamma-mediated adipocyte differentiation. These findings indicate that NR-coregulator interaction profiling may be a useful tool for drug development and biological discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。