A 'torn bag mechanism' of small extracellular vesicle release via limiting membrane rupture of en bloc released amphisomes (amphiectosomes)

通过限制整体释放的两性外泌体(两性外泌体)的膜破裂释放小细胞外囊泡的“破袋机制”

阅读:9
作者:Tamás Visnovitz #, Dorina Lenzinger #, Anna Koncz #, Péter M Vizi, Tünde Bárkai, Krisztina V Vukman, Alicia Galinsoga, Krisztina Németh, Kelsey Fletcher, Zsolt I Komlósi, Csaba Cserép, Ádám Dénes, Péter Lőrincz, Gábor Valcz, Edit I Buzas

Abstract

Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a 'torn bag mechanism'. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。