Resistance to BRAF inhibition explored through single circulating tumour cell molecular profiling in BRAF-mutant non-small-cell lung cancer

通过 BRAF 突变型非小细胞肺癌中的单个循环肿瘤细胞分子分析探索对 BRAF 抑制的耐药性

阅读:7
作者:Laura Mezquita #, Marianne Oulhen #, Agathe Aberlenc, Marc Deloger, Mihaela Aldea, Aurélie Honore, Yann Lecluse, Karen Howarth, Luc Friboulet, Benjamin Besse, David Planchard, Françoise Farace0

Background

Resistance mechanisms to combination therapy with dabrafenib plus trametinib remain poorly understood in patients with BRAFV600E-mutant advanced non-small-cell lung cancer (NSCLC). We examined resistance to BRAF inhibition by single CTC sequencing in BRAFV600E-mutant NSCLC.

Conclusions

Resistance was not driven by BRAFV600E-mutant CTCs. Extensive tumour genomic heterogeneity was found in CTCs compared to tumour biopsies and cfDNA at failure to BRAF inhibition, in BRAFV600E-mutant NSCLC, including relevant alterations that may represent potential treatment opportunities.

Methods

CTCs and cfDNA were examined in seven BRAFV600E-mutant NSCLC patients at failure to treatment. Matched tumour tissue was available for four patients. Single CTCs were isolated by fluorescence-activated cell sorting following enrichment and immunofluorescence (Hoechst 33342/CD45/pan-cytokeratins) and sequenced for mutation and copy number-alteration (CNA) analyses.

Results

BRAFV600E was found in 4/4 tumour biopsies and 5/7 cfDNA samples. CTC mutations were mostly found in MAPK-independent pathways and only 1/26 CTCs were BRAFV600E mutated. CTC profiles encompassed the majority of matched tumour biopsy CNAs but 72.5% to 84.5% of CTC CNAs were exclusive to CTCs. Extensive diversity, involving MAPK, MAPK-related, cell cycle, DNA repair and immune response pathways, was observed in CTCs and missed by analyses on tumour biopsies and cfDNA. Driver alterations in clinically relevant genes were recurrent in CTCs. Conclusions: Resistance was not driven by BRAFV600E-mutant CTCs. Extensive tumour genomic heterogeneity was found in CTCs compared to tumour biopsies and cfDNA at failure to BRAF inhibition, in BRAFV600E-mutant NSCLC, including relevant alterations that may represent potential treatment opportunities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。