Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy

利用组合策略改造蓝藻,增强光驱动 D-乳酸的产生

阅读:11
作者:Chao Li, Fei Tao, Jun Ni, Yu Wang, Feng Yao, Ping Xu

Abstract

It is increasingly attractive to engineer cyanobacteria for bulk production of chemicals from CO2. However, cofactor bias of cyanobacteria is different from bacteria that prefer NADH, which hampers cyanobacterial strain engineering. In this study, the key enzyme d-lactate dehydrogenase (LdhD) from Lactobacillus bulgaricus ATCC11842 was engineered to reverse its favored cofactor from NADH to NADPH. Then, the engineered enzyme was introduced into Synechococcus elongatus PCC7942 to construct an efficient light-driven system that produces d-lactic acid from CO2. Mutation of LdhD drove a fundamental shift in cofactor preference towards NADPH, and increased d-lactate productivity by over 3.6-fold. We further demonstrated that introduction of a lactic acid transporter and bubbling CO2-enriched air also enhanced d-lactate productivity. Using this combinational strategy, increased d-lactate concentration and productivity were achieved. The present strategy may also be used to engineer cyanobacteria for producing other useful chemicals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。