Baicalein inhibits cell proliferation and induces apoptosis in brain glioma cells by downregulating the LGR4-EGFR pathway

黄芩素通过下调 LGR4-EGFR 通路抑制细胞增殖并诱导脑胶质瘤细胞凋亡

阅读:5
作者:Xiaobing Zhang #, Xian Shao #, Qingquan Bao #, Lingyan He, Xuchen Qi

Abstract

Patients diagnosed with brain glioma have a poor prognosis and limited therapeutic options. LGR4 is overexpressed in brain glioma and involved in the tumorigenesis of many tumors. Baicalein (BAI) is a kind of flavonoid that has exhibited anti-tumor effects in various tumors. Nevertheless, the functions and associations of BAI and LGR4 in brain glioma remain unclear. In this study, Gene Expression Profiling Interactive Analysis and Human Protein Atlas databases were used to perform expression and survival analysis of LGR4 in brain glioma patients. Subsequently, the significance of LGR4-EGFR in brain glioma cells (HS683 and KNS89) and brain glioma animal models was explored by RNA interference and subcutaneous transplantation. Additionally, brain glioma cells were treated with BAI to explore the roles and mechanisms of BAI in brain glioma. The results showed that LGR4 was highly expressed in brain glioma and was related to a poor prognosis. LGR4 knockdown repressed the proliferation and EGFR phosphorylation but induced apoptosis in brain glioma cells. However, these effects were reversed by EGFR overexpression and CBL knockdown. In contrast, both in vitro and in vivo experiments revealed that LGR4 overexpression facilitated brain glioma cell malignant behavior and promoted tumor development, but these effects were rescued by BAI and an EGFR inhibitor. Furthermore, si-LGR4 accelerated EGFR protein degradation, while oe-LGR4 exhibited the opposite effect. Without affecting normal cellular viability, BAI inhibited malignant behavior, interacted with LGR4, and blocked the LGR4-EGFR pathway for brain glioma cells. In conclusion, our data suggested that BAI inhibited brain glioma cell proliferation and induced apoptosis by downregulating the LGR4-EGFR pathway, which provides a novel strategy and potential therapeutic targets to treat brain glioma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。