MicroRNA-mediated post-transcriptional regulation of Pinus pinaster response and resistance to pinewood nematode

MicroRNA 介导的转录后调控松树对松林线虫的响应和抗性

阅读:6
作者:Inês Modesto, Vera Inácio, Yves Van de Peer, Célia M Miguel

Abstract

Pine wilt disease (PWD), caused by the parasitic nematode Bursaphelenchus xylophilus, or pinewood nematode (PWN), is a serious threat to pine forests in Europe. Pinus pinaster is highly susceptible to the disease and it is currently the most affected European pine species. In this work, we investigated the role of small RNAs (sRNAs) in regulating P. pinaster-PWN interaction in an early stage of infection. After performing an artificial PWN inoculation assay, we have identified 105 plant microRNAs (miRNAs) responsive to PWN. Based on their predicted targets, part of these miRNAs was associated with roles in jasmonate-response pathway, ROS detoxification, and terpenoid biosynthesis. Furthermore, by comparing resistant and susceptible plants, eight miRNAs with putative functions in plant defence and resistance to PWN have been identified. Finally, we explored the possibility of bidirectional trans-kingdom RNA silencing, identifying several P. pinaster genes putatively targeted by PWN miRNAs, which was supported by degradome analysis. Targets for P. pinaster miRNAs were also predicted in PWN, suggesting a role for trans-kingdom miRNA transfer and gene silencing both in PWN parasitism as in P. pinaster resistance to PWD. Our results provide new insights into previously unexplored roles of sRNA post-transcriptional regulation in P. pinaster response and resistance to PWN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。